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The effect of hydrostatic pressure on the electr onicproperties of
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Abstract

We present first principles calculations of thectienic properties of TIBr and TICI
binary semiconductor compounds. The dependencesyarostatic pressure of these properties
(band structure, density of states, electronic ginatensity) are successfully calculated using
self-consistent scalar relativistic full potentig@ear augmented plane wave method (FP-LAPW)
within the generalized gradient approximation (GAGAg GGA corrections yield only minor
improvement, whereas Engel-Vosko approximation g@&esignificant improvement to the band
gap. The results are compared with previous cdionls and with experimental measurements,
we found good agreement with our calculations.
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1-INTRODUCTION

Thallium halides (TICI and TIBr) are technologigalery important materials having
many applications as radiation detectors and asamical fibre crystals. Thallium chloride and
thallium bromide both, crystallize in the cubic Cs@ucture. This structure, with a coordination
number of eight, represents the most stable demdegaration for ionic crystals [1-3].

In the past two decades there has been much interdse pressure dependence of the optical
properties semiconductors [4-9]. While the fundaraleanderstanding of this problem is in itself
of great importance, with the recent developmenstadined superlattices it has become more
relevant.

High-pressure studies are a very efficient toohoterstanding the electronic and optical
properties of semiconductors [10], but they havenbgcarcely used in the investigation of TIBr
and TICI, compared to other 1I-VI semiconductors.

The study of materials at high pressures has & ga@itybecause of the developments of the
diamond-anvil technique and the extension ofthegeafor optical and X-ray measurements
under static pressures [11,12].

The main motivation of this work is to study theange in the optical properties under pressure
of two technologically important semiconductors Ti@d TICI.A modification of the crystal
lattice which does not change its symmetry propsrdgan be obtained by applying hydrostatic
pressure to the crystal. A pressure changes prediluéis of the electronic states and, hence a
change in the optical properties of the crystaler€fore pressure provides a convenient
technique for modifying optical constants by a colféd amount.

Most of the heavy-metal halides crystallize intasatropic or layered structures. The
simple lattice structure would reduce the compiegit electronic structure usually encountered
in anisotropic materials and allow us a simple ysialof the optical spectra. Optical properties
of TIC1 and T1Br have been studied by many workerthe absorption edge [13] and in the
VUV region [14].A remarkable property of thalliumalide crystals is their high dielectric
permittivity. The static values are 30 and 32 fag tubic TIBr and TICI [15-16].

In this study, we have investigated the opticalppries by means of first-principles
density-functional total-energy calculation usihg tll-electron full potential linear augmented
plane-wave method (FPLAPW) [17].
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2- CALCULATIONS

The calculation of the pressure of optical propsrtis a long standing problem in
semiconductor physics. Although detailed calcuteti@f the pressure dependence of optical
properties with varying degree of sophisticatiokeliempirical pseudopotential [18], self-
consistent first principle pseudopotential [19,201d quasiparticle [21,22] have successfully
estimated some coefficients, the results are noegnsatisfactory.

A modification of the crystal lattice which doestndhange its symmetry properties can be
obtained by applying hydrostatic pressure to thgstal. A pressure changes the lattice
parameters and, hence produces shifts of the efectstates in the crystal.

Scalar relativistic calculations have been perfamasing the wien2k code [23,24]. For
the exchange correlation potential, we have useddtal density approximation (LDA) with a
parameterization of Ceperly-Adler data [25]. Thevrieull Potential Augmented Plane Wave
method of the density functional theory is applj2d,27]. Several improvements to solve the
energy dependence of the basis set were tried Hautfitst really successful one was the
linearization scheme introduced by Andersen[28Hileg to the linearized augmented plane
wave (LAPW) method. In LAPW, the energy dependesfoeach radial wave function inside the
atomic sphere is linearized by taking a linear coration of a solution u at a fixed linearization

energy and its energy derivativeomputed at the same energy.
Y [a () g ()Y ) (R,

®, (r)= y )
Q7 exp(i(k+ K).r) rol

(1)

Where r'=r-i, is the position inside sphesewith polar coordinates r’ and k,is a wave vector in
the irreducible Brillouin zoneK is a reciprocal lattice vector and is the numerical solution to

the radial Schrodinger equation at the energyhe coefficientsa!® are chosen such that the

atomic functions for all L components match (inuglthe PW with K at the Muffin tin sphere
boundary. The KS orbitals are expressed as a licearbinations of APWsb, (r). In 1991

Singh [29] introduced the concept of local orbitdl©s) which allow an efficient treatment of
the semi-core states. An LO is constructed by tAB\W radial functions u and at one energy
g1 in the valence band region and a third radial fiomcate,.

D ()=

{[a‘imtﬁ ST TS RGN B

rl

Recently, an alternative approach was proposed jbgtefit et al [30 ], namely the
APLW+ lo (local orbital) method. Here the augmeiatatis similar to the original APW scheme
but each radial wavefunction is computed at a filkeearization energy to avoid the non-linear
eigenvalue problem. The missing variational freedofnthe radial wavefunctions can be
recovered by adding another type of local orbifEsmed in lower case to distinguish them from
LO) containing u anditerm:



120

121
122
123
124
125
126
127
128

129
130
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

P (r)=

{[a‘i""w’ CFECE Y E) KR -

ril

It was demonstrated that this new scheme convéages than LAPW. The APW +lo scheme
has been implemented in the wien2k code versioh [31
However, in the calculations reported here, we etibe muffin tin radii for Tl, Br and Cl
to be 2.5 a.u.. The expansion of the sphericaloregs developed up tan4=10 for both
compounds, while in the interstitial region we haged 372 plane waves for TIBr and 331 for
TICI. Furthermore, we have used the energy cutedfRur.K,z=8and the maximal
reciprocal vector equal to 10 for both compounds.

3.RESULTS

The structural optimization of the cubic phase wssformed by calculating the
totalenergy as function of the volume. The minirtimaof the total energy versusvolume
requires that each of the self-consistentcalcutatis converged, so the iteration process was
repeated until the calculated total energyof thestat converged to less than 1 mRyd.A total of
seven iterations were necessary to achieve seffistemcy for TIBr and nine iterations in the
case of TICI. The equilibrium lattice constants dndk modulus are calculated by fitting the
total energy versus volume according to Murnagha&asation of state [33]. The variation of
total energy as a function of volumeis shown inufes 1la and 1b for TIBr and TICI
respectively.

Our results are shown along with other theoret@dlies in Tables 1 and 2. It is found
that for the generalized gradient approximation fO@&) and (GGA96), the energy gap is
underestimated relative to the experimental value tb the well known artifact of the local
density approximation calculations, while the ERgekko scheme gives quite a nice band gap
compared to the experimental one.

3.1 Electronic band structures

The electronic band structures of cubic TIBr an@lTlong symmetry lines are shown in
figures 2a, 2b at normal pressure and 3a, 3b uhgerostatic pressure.The calculated band
energy gap at high symmetry points is given indatjl the band gap is found to be direct and
equal to 1.87 eV and 2.08 eV for TIBr and TICI resfvely, which is in close agreement with
other theoretical calculations as shown in table 2.

It is clear from these figures that the energy Ieweee shifted upon applied pressure for both Tl
Br and TICI; under pressure, the energy levelsliervalence bands decrease while the ones of
the conduction bands increase, the main band gepalso increased under pressure, hence The
valence bandwidth increases with the increase efgure, while the conduction bandwidth
decreases with the increase of pressure.

The band structure is qualitatively similar to tleatambient pressure. However, the conduction
minimum at C shifts upwards, while the X-point caotion-band minimum moves down
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relative to the valence-band maximum. The energyeflowest conduction band at the L point

is almost independent of pressure.

We applied a pressure up to 8.69 GPa for TIBr an@3LGPa for TICI, because this structure

transforms to another phase when pressure exdeests Yalues.The variation is not constant and
depends on the k-point and energy. Both materidisustudy remain a direct band-gap at 8.69
GPa for TIBr and 10.33 GPa for TICI.

It is interesting to compare our calculated gaps wkperimental data (see table 2). Since
guasi-particle excitations are not taken into aotan density functional theory (DFT), the
energy gap calculated from DFT, often called théntc&ham gap, tends to be smaller than the
experimental one. In some cases, even the wronghdrstate is predicted, as, e.g., in Ge, where
the energy gap is around 0.7 eV, whereas the LDAnKSham gap is slightly negative at
ambient pressure [26]. The GGA corrections yieldyominor improvement. Quasiparticle
calculations essentially overcome the underestirafitee band gap as obtained using the LDA,
The GW [27 ] calculations for GaN for instance glibland structures in much better agreement
with experiment; they are, however, time consunang do not, as yet, produce selfconsistent
total-energy values. However, in our case, thetheeEngel-Vosko improves significantly the
band gap which becomes closer to the experimental o

Figure 2a indicates that TIBr with cubic structinas a direct band gap between the top
of the valence band and the bottom of thecondudiaond at the X. The lowest band is the Tl 6s-
band. At X there is significant mixing between ti@minal Tl s and the & which is the valence
band edge. A maximum pressure of 8.69 GPa was used.

In the case of TICI (figure 3a), the overall reswdte similar to TIBr; table 2 summarizes
the key information for TICI, discrepancies betwesalculated and experimental band gap,
which can be attributed as stated earlier to tleha@xge GGA potentials which do not take into
account the excitations, whereas the Engel-voskececton significantly improves the gap
which is 2.72 eV and 2.96 eV for TIBr and TICI respvely different from the experimental
ones. Note that in the case of TICI, the Cl s ahdupds make the convergence of the calculation
a bit longer. The calculated band gaps at p= &B@ and p=10.33 GPa for TIBr and TICI are
given in table 3.

Table 1:Static equilibrium constant a (&) for TIBr andCIl Comparison of present results
with previous calculations.

TIBr TICI
Compounds
Present Other Exp. Present Other Exp.
work calculations work calculations
(GGA96) (GGA96)
Lattice parameter a (A) 4.0 396 |3.98| 3.84 3.84 |3.87

¥eference [28]
“reference [29]
‘reference [30]
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TIBr Present work | Present work | Present work | Other calculations Experiment
Energy gap (eV)| 1.87 (GGA96)| 1.74 (GGA92)| 2.72 (Engel- 2.38 eV (OPWH 268
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3.2 Total charge density

To visualize the nature of the bond character anelxplain the charge transfer and the bonding
properties of cubic TIBr and TICI, we calculate tb&al charge density.
The electronic charge density is obtained for daaihd n by summing over the k-states in the

band.
Pa(r) = X | W1 (6)
k
and the total charge density is obtained by sumrmumeg the occupied band.
p (=3 A1) -

The total valence charge densities for the two fyimmpounds,TIBr and TICl,are displayed
along the TI-Br-Cl bonds in figures 3a and 3b.

Figures4a and 4b show the charge density distabuti the (110) plane for TIBr and
TICI respectively at normal pressure and at 8.6% @&® TIBr and 10.33 GPa for TICI. The
calculated electron charge distributions indicdtat there is a strong ionic character for both
compounds as can be seen along the TI-Br-Cl bdrtdscharge densities around the atoms have
asymmetric forms which are similar to those giveipiievious reports using the ab initio pseudo-
potential method [32]. The charge transfer givee fio the ionic character in TIBr and TICI
semiconductor compounds. The driving force behimedisplacement of the bonding charge is
the greater ability of Tl to attract electrons tods it due to the difference in the
electronegativity of Tl and Br. However as presdarapplied we note a charge transfer toward
the interstitial region, and also a decrease inctierge density, more noticeable in the case of
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TIBr, this is attributed to the difference in there size of these compounds. The charge
distribution which was concentrated at the atomtessat normal pressure becomes more
delocalized throughout the unit cell. This diffecenhas important physical consequences, the
substitution of the interstitial sites of TIBr aimtC| with host atoms can affect the band structure
topology and gives rise to a semiconductor with péwsical properties.

The total DOS curves displayed on figures 5a andjisb an idea about the dominant orbital
character of the groups of bands in the indicategions of energy for TIBr and TICI,
respectively.

The cubic binary compounds TIBr and TICI have vateband densities of states qualitatively
similar to the band structures. The energy zetbagop of the valence band,, Br valence-band
maximum (VBM). Structures of the density of states labeled with the same notation as the
band structure and the corresponding points irBitileouin zone follow from inspection of the
band structure. The minimum of the density atest occurs dt at -5.3 eV for TIBr and -5.2
eV for TICI. The lower states from -5.3 to -2.7 awd from -5.2 to -2.71 eV for TIBr and TICI,
respectively have primarily s character and araliped on the anion. The second state of the
second valence band is cation s, it changes ramdiyion p-like at the top of the valance band
in the case of TICI. However, as pressure is agptiee intensity of the peaks in the DOS figure
decreases and also both valence and conductiongeatkg are shifted as sated above in the band
structure analysis.

Table 3. The calculated band energiesfor TIBr and TICI different
pressure&(resent work GGA96)

TIBr TICI
Pressure(GPa) Energy gap Pressure(GRa) Energy gap
0 1.87 0 2.08
8.69 0.76 10.33 0.87

Conclusion

The effect of hydrostatic pressure on the electr@noperties of cubic TIBr and TICI have been
investigated using the wien2k package, full-potdntinearized augmented plane wave (FP-
LAPW) approach within the density functional theofFT) in the local spin density
approximation (LSDA) including the generalized desd approximation (GGA) was used. The
use of GGA for the exchange-correlation potentiatnptted us to obtain good structural
parameters but an underestimated fundamental bapdvwghereas the Engel-vosko correction
significantly improves the gap. The charge dersitiave been presented and provide additional
evidence of the similarity of the bonds in TIBr aftCl. As a result of the ionic character of
these two binary semiconductor compounds whicheshaany similar properties. We noticed
that at much lower pressures, the character ofuth@amental gap is affected by changes in band
dispersion of the topmost part of the valence barxbth TIBr and TICI.
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However, the charge distribution which was conaett at the atomic sites at normal pressure
becomes more delocalized throughout the unit celpessure is applied, this has important
physical consequences, substitution of the inteaksites with host atoms will give rise to a
semiconductor with different physical properties.
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Figure captions

Figure 1a: Energy (eV) versus Volume ghfor TIBr

Figure 1b: Energy (eV) versus Volume ifor TICI

Figure 2a:Energy (eV) versus Wave vector for TIBr at normagsure (GGA-08)

Figure 2b:Energy (eV) versus Wave vector for TICI at normpedssure (GGA-08)

Figure 3a: Energy (eV) versus Wave vector for TIBr at preegu=8.69 GPa, (GGA-08)

Figure 3b: Energy (eV) versus Wave vector for TIC| at preegu=10.33 GPa, (GGA-08)
Figure 4a: Electron density (arb. Units) versus Position . fafor TIBr at normal pressure and at
p= 8.69 GPa (GGA-08)

Figure 4b: Electron density (arb. Units) versus Positiom.jafor TICI at normal pressure and at
p=10.33 GPa (GGA-08)

Figure 5a: Density of states for TIBr at normal pressure ahfg= 8.69 GPa (GGA-08)
Figure5b: Density of states for TICI| at normal pressure ano=8.69 GPa (GGA-08)
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